A dual finite element complex on the barycentric refinement

نویسندگان

  • Annalisa Buffa
  • Snorre H. Christiansen
چکیده

Given a two dimensional oriented surface equipped with a simplicial mesh, the standard lowest order finite element spaces provide a complex X• centered on Raviart-Thomas divergence conforming vector fields. It can be seen as a realization of the simplicial cochain complex. We construct a new complex Y • of finite element spaces on the barycentric refinement of the mesh which can be seen as a realization of the simplicial chain complex on the original (unrefined) mesh, such that the L2 duality is non-degenerate on Y i×X2−i for each i ∈ {0, 1, 2}. In particular Y 1 is a space of curl-conforming vector fields which is L2 dual to Raviart-Thomas div-conforming elements. When interpreted in terms of differential forms, these two complexes provide a finite-dimensional analogue of Hodge duality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On exact integration in the finite volume element method on simplicial meshes

This paper considers the technological aspects of the finite volume element method for the numerical solution of partial differential equations on simplicial grids in two and three dimensions. We derive new classes of integration formulas for the exact integration of generic monomials of barycentric coordinates over different types of fundamental shapes corresponding to a barycentric dual mesh....

متن کامل

An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements

In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...

متن کامل

The intersection of bivariate orthogonal polynomials on triangle patches

In this paper, the intersection of bivariate orthogonal polynomials on triangle patches will be investigated. The result is interesting by its own but also has important applications in the theory of a posteriori error estimation for finite element discretizations with p-refinement, i.e., if the local polynomial degree of the test and trial functions is increased to improve the accuracy. A tria...

متن کامل

Fast Finite Element Method Using Multi-Step Mesh Process

This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...

متن کامل

Invariance of the barycentric subdivision of a simplicial complex

‎In this paper we prove that a simplicial complex is determined‎ ‎uniquely up to isomorphism by its barycentric subdivision as well as‎ ‎its comparability graph‎. ‎We also put together several algebraic‎, ‎combinatorial and topological invariants of simplicial complexes‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2007